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The shear stress on a wall is determined through a comparison of experimental and 
theoretical determinations of velocity distribution using a family of Thompson or 
Cole profiles. 

The shear stress on a wall is one of the most important characterisitcs of flow in a 
boundary layer. This characteristic is used in constructing various types of generalizations 
and in integral methods of calculating drag. 

Clauser's method [I] is the simplest of the methods presently available for empirically 
determining local shear stress on a wall. It does not require special measuring instruments, 
such as are needed in determinations of shear stress made by heat sensors, floating elements, 
Preston surface tubes, etc. The method is based on the following law for the wall 
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By arranging the boundary-layer velocity distribution measured with a head meter or hot- 
wire anemometer in accordance with Eq. (I), we can find the value of C F. Such a problem is 
usually solved graphically, by constructing a grid of straight lines u/u: = f(yu:/u) with the 
parameter m. 

We will use the method with a gradient flow and a flow with a high degree of turbulence 
in its outer portion. This can be done thanks to the universality of the wall law [2-4]. How- 
ever, the section of the velocity profile which coincides with the logarithmic law is abbrevi- 
ated when high positive pressure gradients are present, thus lowering the accuracy of the 
shear stress determination. In connection with this, Pirs and Tsimmerman [5] developed a 
universal method which makes it possible to use additional points of the velocity profile in 
the laminar and transitional regions of the boundary layer when analyzing experimental data. 
The number of experimental points of the velocity profile used to determine the averaged value 
of Cf is thus also increased. However, the computing procedures here are complicated appreci- 
ably. The reduction in the accuracy of velocity measurement in the immediate vicinity of the 
wall should also be considered. 

In the generalization of Clauser's method proposed here, the region of empirical velocity 
values by which shear stress is determined is expanded at the expense of the outer part of the 
boundary layer. The velocity measurements are most accurate in this region. 

To determine the wall shear stress in an assigned section x, we use the empirical values 
of velocity distribution u/u~ and displacement thickness 6". Similar to Clauser's method, the 
distribution u/ux = f(Rey) at different values of Cf is compared with the empirical velocity 
profile. Since the velocity profile in the outer part of the boundary layer depends on the 
pressure gradient, then instead of the wall law we use the more universal approximation of 
velocity distribution after Thompson [6] 
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or Coles' wake law [7] 
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Fig. i. Thompson function y: i) according 
to Galbraight and Head; 2) according to 
Eq. ( 8 ) .  

Let us first look at the determination of shear stress by means of Eq. (2). 

As was shown in [6, 8] and other studies, the two-parameter Thompson profile approximates 
well experimental data on velocity distribution in the boundary layer. We also found evidence 
of this in our analysis of the study results presented at the Stanford conference and the 
investigations [9, i0]. Comparison of theoretical velocity profiles with experimental pro- 
files for 125 experiments- including 25 different equilibrium, nonequilibrium) and relaxa- 
tion flows --within a broad range of pressure gradients showed a nearly complete agreement. 

According to Galbraight and Head [8]) the "weight" function y is equal to unity within 
the range 0 < y/6 ~< 0.05 and equal to zero close to the outer edge of the boundary layer at 
0.95 < y/6 ~< i. The interval 0.05 < y/6 ~< 0.95 is divided into three sections. The function 
y is described in each of these sections by a second-order polynomial. The coefficients of 
the polynomial are chosen so that continuity of the first derivative is assured at the conju- 
gate points. 

To simplify the calculations, we will introduce a function which approximates y over the 
entire interval (0.05)~(0.95), 

Let us rewrite Eq. (3) in the form 

u - -  uin n W. ( 4 )  
V, k 

On t h e  o u t e r  e d g e  o f  t h e  b o u n d a r y  l a y e r ,  w h e r e  W = 2 ,  we  w i l l  h a v e  

U i -- Uin -- 2 n 
v* T " (5) 

After dividing (4) by (5) and transforming, we find 

ui - -  u - -  1 - -  0 .5W. ( 6 )  
U 1 - -  t / in 

In making a comparison with (2), we are convinced that the functions Y and W are connected 
by the simple linear relationship 

v = 1 - -  o,sF/. (7) 

We will take the Heinz approximation for W: 

Y 
W = I -- cos 

8 

Since the Thompson function is approximated by the Galbraight and Head polynomials within the 
range from y/~ = 0.05 to y/6 = 0.95, then we approximate W within the same limits. Then 

[ 0 
7 = 0 - 5  1 + c o s  n --0.05 . 

9 8 

The functions y calculated by means of the polynomials and from Eq. (8) nearly coincide 
(Fig. I). 

(8) 
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Fig. 2. Calculated (solid lines) and measured (points) veloc- 
ity profiles: a) i -- Bradshaw's experiments, x = 0.762 m; 2 -- 
same, x = 1.879 m; 3 -- Schubauer and Spengenberger, x = 4.57 
m; 4 -- Ludwieg and Tillman, x = 3.33 m; 5 -- Schubauer and Spen- 
genberger, x = 5.08 m; b) i -- our experiments, x = 0.3 m; 2 -- 
same, x = 0.7 m; 3- Arnal's experiments, x = 0.384; 4 --Lud- 
wieg and Tillman, x = 1.28 m; 5 -- Arnal -- x = 0.478 m. 

It follows from (2) and (8) that, beyond the limits of the buffer layer (y+ > 30), the 
velocity profile in the boundary layer is described by the equation 

u _0o5 l + c o s  - - ~ I  lnR%~oq-B~o -t- 1--cos - -~ , l  , 
u, 9 9 

where 

~1 -- g 0~ Rey = u i g  
6 v 

We take the following for the velocity distribution in the laminar sublayer and buffer layer 

[8]: 

at O < g + < 4  u + = g +  (10) 

at 4 < y + < 3 0  u+=4'187--57451ng ++5"11( lng+)2-O'767(lng+)3" (11) 

Equation (ii), proposed by Dvorok and modified somewhat in the work [8], ensures continuity 
of the first derivative at the layer boundaries. 

Substituting (9), (i0), and (ii) into the expression for the displacement thickness and 
integrating within the corresponding limits on the assumption of a three-layer scheme for the 

boundary layer, we find 

6"=610.5--~o(0.80095-~1.19431n 5u~ ~) ]  + 5 0 . 7 - -  .u~V (12) 

Equations (9) and (12) are the basis of the proposed method for determining the coef- 
ficient of friction on the wall. 

We first use the velocity profile measurements to calculate the displacement thickness 
~*. Directing our attention to the experimental velocity determinationD we assign the bound- 
ary-layer thickness 6. Knowing 6*, we find ~ from Eq. (12). We then use the known values 
of ~ and Re 6 = u:~/~ and the series of values taken for y/6 to first calculate Rey = Re~y/5. 
Then we calculate u/u~ by means of Eqs. (9). We compare these values with the experimental 
results. If there is no agreement the calculations are repeated after assigning a new value 
for 6. It is convenient ~o calculate the relative velocities u/u~ a~ the same values of y/6 
that were used in the experiment. 
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TABLE i. Comparison of Methods of Determining the Friction Coef- 
f icien~ 

r i a l  
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Experiments 

Bradsbaw, flow C 

Ludwieg and Ti l lman 
flow 1200 

Authors, Tu = 2,6% 

A rnal, flow A2 
Tu = 5,0% 

Bradshaw, flow C 

Authors Tu = 2,4% 

Ludwieg and Til lman 
fow 1200 

Arnal, flow A1 

Schubauez and Spen- 
genberger, flow 4800 

Schubauer and S p e n -  
genberger, flow 4800 

X, M 

O, 762 

1,282 

O, 300 

O, 478 

1,829 

0,700 

3,332 

O, 384 

4,572 

5,080 

H 

1,39 

1,400 

1,469 

1,490 ! 

1,522 i 

1,565 

1,6481 

1,670 : 

1,752 [ 

2,342 i 

6*, 
m m  

5,441 

5,446 

2,414 

3,747 

15,18 

7,464 

29,81 

2,306 

46,41 

97,40 

I 

1,331 

0,582 

0,717 

1,600 

2,678 

2,133 

6,312 

1,369 

[7,61[ 

74,38 

CfC'I0~C]LTX• C~jT.10' 

245 238 239 

249 248 249 

369 370 379 

213 228 219 

161 160 158 

232 252 247 

120 121 120 

205 199 208 

94 105 100 I 

27 38 35 

C]Hll0S C$.10 I 

225 238 

245 249 

-- 366 
~63 

- -  238 
228 

163 162 

- -  245 

123 122 

- -  205 

- -  t06 
97 

- -  37 

To check the validity of the above method of determining wall shear stress from a 
measured velocity profile in the outer part of a boundary layer, we analyzed experimental 
data taken from materials from the Stanford conference [ll], Arnal's experiments [12] on 
boundary-layer flow at a high degree of outer-flow turbulence, and our own velocity-distribu- 
tion measurements. 

The experiments used for the analysis embrace a fairly broad range of values of the 
form factor H, displacement thickness 6", and the Clauser parameter 8 = ~*/Tw'dP/dx. The 
results of the calculations are shown in Table 1 and Fig. 2. 

The resultiug values of friction coefficient Cf (the last column of Table l) are com- 
pared with the friction coefficient values determined by Clauser's method (Dfc) , from Lud- 
wieg's and Tillman's formula (CfLT) , by means of Thompson curves (CfT) , and by direct measure- 
ment (Cfm). In all of the cases of boundary-layer flows examined, complete agreement was 
obtained among the values of Cf determined by the different methods. The maximum and minimum 
values of the friction coefficient in the above-examined experiments differ by one order. 

The velocity distribution in the outer part of the boundary layer can be approximated 
by the three-parameter Coles profile. Accordingly, determination of the wall shear stress 
requires the calculation of three equations. We tried out two variants of systems of equa- 
tions: the first included Eq. (3), as well as the equations 

kS* 
- - -  = 1 +. n. ( 1 3 )  

~5 

k ~ (__6"-- -0  ~ = 1 + 1 . 5 9 0 H +  0 . 7 5 "  2 �9 ( 1 4 )  
/ 

They were obtained by Coles [7] on the assumption that flow in the laminar sublayer and 
transitional region deviates negligibly from the wall logarithmic law. 

Excluding the parameter H from (3) and (14) by means of Eq. (13), we obtain two equations 
which are solved simultaneously, as examined above. 

We use Eq. (3) with y = ~ in the second variant. The initial data required in the first 
variant are the velocity profile and the two integral boundary-layer characteristics 6" and 
O, while the initial data in the second variant are the velocity profile and 6*. The two 
variants gave roughly the same values for the friction coefficient. The calculations were 
performed for three flows. The results are shown on lines 3, 4, and 9 in Table i. The 
values of Cf in the last column are given in fractional form for these lines: the numerator 
gives the results calculated using the Thompson profile, while the denominator shows the 
results obtained using the wake law of Coles (second variant). 

476 



It can be seen from Table 1 that the two methods give generally the same results. We 
did not conduct a de=ailed comparative analysis of the methods. It can only be suggested 
that the method based on the Colas wake law is less accurate due to the assumption made in 
calculating the integral characteristics 6' and 0. 

NOTATION 

Cf, friction coefficient; u, current velocity over the thickness of the boundary laye~ 
u~, velocity at the outer boundary of the boundary layer; rW, wall shear stress; v, = /~/p, 
dynamic velocity; u* = u/v,; y* = yv,/~; H, parameter in Colas' wake law; (u/u~)in, (u/ " 
v,)in , velocity distribution in the wall region [Eqs. (i0), (ii), (I)]. 
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